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o ABSTRACT
: \‘\l‘/
i'An algorithm is proposed for solving one-dimensional free boundary

3 problems with change of phase. The technique consists of solving the heat
.\ equation in progressively increasing rectangles whose size is controlleqd by

the Stefan condition. Convergence of the scheme is shown and an estimate of

the rate of convergence is given.
"
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SIGNIFICANCE AND EXPLANATION

Stefan type problems arise as descriptions of phenomena such as melting
of metals, solidification of alloys, crystal growth, permafrost behavior. Of

particular importance in such problems is the shape and evolution of the free

boundary or interface.

This paper suggests a method of constructing the free boundary by solving
the heat equation in a sequence of increasing rectangles. The interface is

then approximated by piecewise vertical segments.

The simple geometry, and boundary conditions suggested, can be used to

perform efficient numerical calculations.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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AN ALGORITHM FOR THE ONE-PHASE STEFAN PROBLEM
(2)

E. DiBenedetto“) and R. Spigler

1. Introduction:

Consider the following one-phase one-dimensional Stefan problem

[ Lu = uxx-ut=0 in DTE{0<x<s(t)}K(0,'r]

u(x,0) = h(x), 0 <x<s(0) =b, (b>0)
(SP) 1 u, (0,t) = g(u(o,t),t), 0<t<T
u{s(t),t) = 0, 0¢<te<T
| u (s(t),6) = -s(t), octsT

where x * h(x), (&,t) + g(§,t) are given functions on (0,b) and R x (0,T]
respectively.

Under suitable assumptions on h(°*) and g, (SP) admits a unique classical
solution. Por such results we refer to the survey article [13] and other papers given
in the extensive bibliography.

The aim of this paper is to propose an algorithm to oconstruct the solution, which
consists in solving the heat equation in progressively increasing rectangles, whose

size is ocontrolled by the Stefan condition ux(s(t),t) = -s.(t) .

Such an algorithm arises as a natural modification of Huber's method [15,10,1]

and can be described in a simple fashion as follows.

First the interval ([0,T] is divided in n intervals of length 8 = T/n, then

for t e [0,0] we set se(t) = b and solve the problem

(”Indiana University, Bloomington, IN 47405,

(2)1gtituto A1 Matematica Applicata, Universita di Padova, Italy.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.,
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.J ule=ul =0 in Ry = {0 ¢ x <D} x (0,8
- uk(o,t) = gtu'(o,e),0), RN
= (Py) u'(x,0) = hex), 0c¢x<D
. u'b,t) = 0, 0cec<s,

We compute the number ul(sa(e) = b,0) and determine the rectangle
Ry 2 {0 < x<x,=b=-ulth,06} x (8,20] ,

setting se(t) - xz

proceed in this fashion.

for t e (6,20], 1In Ry we golve a problem similar to (P,), and

The convergence of schemes where at each time step the free boundary is

approximated by a vertical segment was conjectured by Datzeff [5,6].

A proof of convergence has been given by Fasano-Primicerio-Fontanella [11].
Their scheme however is somewhat more complicated than the one we propose here, both E
in the construction of the sequence of rectangles and in the boundary conditions on
xj,(j -~ 1)0 < t € 38 which are not homogeneous, being given as a relationship linking
the distance t = (j - 1)0 with the values u?‘"(xj_,,(j - 10).,

Thus the scheme we have described has a two~-fold simplicity: the rectangular
geometry and the homogeneity of the boundary data on the approximating free boundary.

We treat the problem for boundary data on x = 0 of variational type since such
a ocondition is the "natural” one, as pointed out and discussed in (7). The method
could handle the Dirichlet boundary data as well.

We give an estimate of the speed of convergence which turns out to be of the

order of /8, ;
As a related work we mention the methods of [14] based on enthalpy
considerations, which yield a slightly poorer rate of convergence, of the order of
(6 tn 07 Y .
The methods of proof are simple in that we exploit both the rectangular geometry
and the homogeneity of the data to represent the approximating solutions by means of

elementary heat potentials.

-2-
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Section 2 contains the precise description of the algorithm, assumptions and

statement of results. In Sections 3 and 4 we produce basic estimates and prove the

convergence of the approximating solution, to the solution of (SP).
The error estimate is given in Section 5.

We conclude the paper by discussing
some variants of the scheme.
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\ f 2. _Assumptions and statement of results: I
< Throughout the paper we will make the following assumptions on the data.
[Ay) x * hix) is a positive Lipachitz continuous function on [0,b], with
Lipschitz constant H, and h(b) = 0. )
. [Az) (E,£) * g(€,t) is non-poaitive on R * (0,T), continuous with respect to
! t @ {(0,T), Lipschitz continuous in €&, uniformly in ¢, with Lipschitz
i constant G4 and g(h(0),0) = h*(0). Moreover there exists a non-negative
j constant G, such that
., Ig(€,8)1 € G 1€l +G,,  (E,0) @R X (0,71 . "
: For n = 1,2,..., set § = T/n and consider the sequence of problems Pj.
;j § = 1,2,00s,n, defined by
( d =0 in Ry 2 {0 ¢x¢x) x Uy~ eyl
w™ x4 -18), 0cx¢ Xy
) wix,(3 - 118) =
(P&) 4 o, Xy < % < xy
i ’ ul(o,t) = gtul(o,e),0), (3~118ctcye
T | wlixgt) =0, (3 - 18 ¢ &< 40
" where the sequence (x:’}':;“1 is recursively defined by
f'_;' Xo = Xy % br xy = xy_q - Wl a3 - 10IB, 3= 2,3,000m
._; and
% w0(x,0) = u'(x,0) 2 hix) in (0,b] .
3.4 By virtue of (A4l - [A,] each (Pj) admits recursively a unigque classical

solution uj whose derivative ui exista up to the lateral boundaries of Rj.
Coasmquently the sequence (xj} is well defined,

Setting
se(O)- b; ae(t) = xy for (3 - 110 ¢ ¢ < 390, J = 1,2,0ee,n ,
we obtaln a right-continuous, piecewise constant function defined in (0,T]. By

elementary aagiderations and the maximum principle (7,8] uj(x,c) > 0 and the

By e b,y
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numbers ui(xj,je) are non-positive so that xj+1 > xj and a°(°) is
-, non-decreasing.
On the domain
_.n

’ vse = jL;), Ry ¢

i we define the function (x,t) *+ ue(x,t), (x,t) e D’B' by setting

3 ugtx,t) = wdix,e), (x,£) € Ry, 3= 1,2,000m .
N We will think of u(*,*) the solution of (SP) and ug as dafined in the whole half
strip 8§ = (0,”) x (0,T], by setting them to be equal to zero outside Dy and D!e
. respectively. We will use this device for the various functions appearing in what

] follows without specific mention.

For bounded functions (x,t) * w(x,t), t * £f(t) defined in S and (0,t]
. respectively we set
""-,s =  sup |wix,t}]

. {x,t)es
: 'f't- sup If(T)) .

- 0<Tét

.

," We can now state our main result.
.;' Theorem: As 9 + 0, ue(x,t) + u{x,t) uniformly in S and se(t) *+ 8(t) uniformly in
’Q, [0,T) . Moreover there exists a constant C depending upon H, b, G1, Gz' T such that
ALl

lue -~ ul < c/d

' - ‘ L)
L1 "T ]

Remark: (i) 1In view of the stability of (SP) (see [2,3]) the Lipschitz condition in
[A,] can be replaced by

Ay x * h{x) is essentially bounded in [0,b].

(ii) The signum onditinn on g in [Az) can be dropped, provided we assume

g{0,t) = 0, t @ (0,T). 1In this case we set G2 = 0 in the growth condition for g.
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3, Some basic estimates:

Let
1 exp[~ (x = &2
27w (e - 1) 4t - M

r(xlt,€'1) =

be the fundamental solution of the heat equation and let G(x,t;E,T), N(x,t;E,T) be

the Green's and Neumann's functions respectively, defined by

Gi{x,t;€,7) = I'(x,t1§,71) - T(-x,t5§,7) ,
N(Xuttﬁﬂ) = P(X,f-lg,f) + r(-xlt'ElT) .
In the jth rectangle Rj the solution ) of (Pj) can be implicitly represented as
x

3 3 3
(3.1) wdix,t) = [ 7 Wix,t38,(5 - 10I(E, (5 - 1108 -

-f N(x,t;0,)g(ui(0,n),)ar +

+ f N{x,tix .f)uj(x.,T)dt
(j'1)e j X 3

for (x,t) e Rj. Taking the derivative with respect to x 1in (3.1) and letting

x * xj we obtain

x

(3.2 L udix,,0) = [ 3 Glx, t1E,(3 ~ 1O, () - 1181148 -
' 2 x j' ° j' ' ie
t
-f N (x.,£:0,0g(ul(n,),T)ar +
(3-8 * I
: 3
+ {3-1)6 N Xy oty Tuy (x,,T) AT, (- 100 ¢t <30 .

The calculations leading to (3,1)=(3.2) are routine and we refer to [4,9,12] for

details.
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Let us fix 1< 3 €n and (x,t) e Rj and integrate the Green identity
{ 3 )
3—€ (N\:E - “NE) -3 (Na) = n
f over Rk' 1 €%k ¢<3j. Since in Ry, we are away from the singularity we obtain
xk k k
: (3.3) [ N0, k000 (5,k008E = [ N(x,t1E, (x - 1O)K(E, (x ~ 1)0)aE
0 0
¢ ) X8 .
; -- N(x,t10,T)g(ug(0,1),)av + [ Nix,tix ,Thu (x, ,T)dT
: (k=-1)0 (k-1)8
j: for x = 1,2,...,(3 -~ 1).
Ng By virtue of our definition of (Pj), the second integral on the left hand sids »f
’ (3.3) can be rewritten as
o
k-1 X1
] -] Nk - 10V, - 1e)aE ;
( ° !
! Consequently adding the identities (3.3) for k = 152,000,{3 = 1) with (3.1) and
% - recalling the definition of ue(x,t) we obtain
T b t
: (3.4) uglx,t) = ] wx,e:€,00m(E) a8 - / N(x,t;0,T)g(uy(0,7),T)ar
0 0
3=1 k8 X
+ Z f N(x,t;xk,r)ux(xk,t)dt +
k=1 (x-1)0
¢ , ?
+/ NG tixg Dudtxg v ar .
(§=1)0 1
) [
Lemma 3.1: For each 6 the following estimates are valid E
3
2525 % 1/ 1
(a) tug (0,8 < [ub + le ¢, . i
e T /r 4] 1
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Proof: By virtue of the maximum principle ug 2 0 in Ds and u?‘(xj,t) <o,
8

te ((jJ ~1)0,j0), therefore dropping the non-positive terms on the right hand side

of (3.4) and letting x * 0 we obtain

b .t 9tugl0,1),T)
0 < ug(o,8) ¢/ 2r0,t5€,00n(E)aE - — [ at
0 v 0 e -t
b G, t ug(0,T) %
< b / Lexp[-52/4tld€ +-—1f 8 ar + —2 /7 ,
* o V& o /-t v

Statement (a) is now a oonsequence of standard calculations and Gronwall's
inequality.
Statement (b) follows from the maximum principle applied recursively to (Pj) .

Lemma 3.2: For each 3§ = 1,2,...,n

(a) ludixg,e1) < Re' + ool zc,, = 1//mH?
2
(b) I3x velxit)l €.y (x,£) D,

8
where G = G,Cy + G,, and H = max{H,}.

Proof: We employ an inductinon argument by making use of formulae (3.2). First we
prove that if for some 3§ = 1,2,...,(n -~ 1) we have
lul(x,39)| <p, 0 < x < xy

for some positive constant P, then

2 2

+1 8//xp (] 8//xp
(3.5) lud*t(xy4q.8) 1 < e vl , te (38,03 + 18
where

max [g(ug(0,t),t)| SG,C, +G, G .
(0,7 170 2

Congider (3.2) written for the integer 3j + 1

1 3+

(3.6) AARCRTLILE A A

and estimate the integrals I;r 1 =1,2,3 separately as follows.
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x+1

3
I+ .
1140 = |£ G(xj+1,t:5,je)ux (£,36)4aE| = by definition of (Pj)
x

*3 3 3
= ;{ Gxy,q,t18,30)u (5,30) ] < P{, o 0xy 4 0ts8,30) 148

To estimate Iy, I3 we recall the following elementary estimates on N

4
£ o— b
|Nx(xj*1,t10,r)l ,;bz ' (xj+1 b>0)
IN_(x, . otix, )| € —
) ’ .
x Tj+t j+1 2/;b2
Therefore
4G
11,1 < 3 (t - j0) < 4G 3
/p /np

t
I, ¢ == [ 3"

(x,,.,7)lar .
3 2/;b2 38 x I+

Putting together these estimates as parts of (3.6) we have

t
8 j+1
+ = Ju?

(x T)}ar
A T AL

luaﬂ(xjﬂ,t)l <P+ 8

for all t e (30,(3 + 16).

Consequently by Gronwall's inequality (3.5) follows at once.

Consider now the problem (Pj) j =1, since x * h(x) 1is Lipschitz continuous
in [0,b], h'(x) exists for a.e. x e (N,b] and

ess sup |h'(x)| € H € H = max {H,G} .
[0,b]

Therefore by the pravisus argument

[



lultxg, 011 ¢ He® + scae®, ¢ e (0,0]
where for simplicity of notation we have set a = O/J;bz. The function
{x,t) * u;(x,t) 2 vix,t), will satisfy the Dirichlet problem

v =0 in R,
v(0,t) = glug(0,t),t)y lgtug(o,t),t)} € G, te (0,0)
Ivix,,t)| € Ho® + 8Gae”, t & (0,0)
{ v(x,0) = h'(x), [h'(x)| €H a.e. x@ (0,b] .
Consequently by the maximum principle
Iul(x,e)l < He” + BGae”

and by (3.5)

lu2(xy,t)] ¢ He® + 8Goe>® + oGae®

< ne2% + sG(ZG)e”. t(6,20] ,

Proceeding in this fashion we obtain

ledtxg,e11 < Hed® + swyme?® | '

X -, Now ja = /1 3 30 ¢ T, and therefore the lemma is proved. Next we introduce the
b
function ¢t * ;e(t) defined by

(3.7) Bg(t) = x, - ui(xj,je)(t -4 -18), te (- 186,98] .

3
! For t = jo, ;e(t) = Xyqr ;0(0) b, so that the graph of ;e(O) is obtained by
- connecting the points (b,O),(xz.e)....,(xn,(n ~1)0) for te (0,(n - 1)6], and by
the graph of (3.7) for t e {(n - 1)0,T]. The points (xj,(j - 18), 3 =1,2,...,n,
are the lower vertices at the right side of the Rj's.

By Lemma 3.2

b<;e(t)‘b+c1‘, t e (0,7

t
therefore the sequence {;6(')) is equibounded and equilipschitz, so that by Ascoli-
Arzela theorem a subsequence relabeled with 8, oonverges uniformly to some non-

decreasing, Lipschitz continuous curve t * s*(t), with Lipschitz constant bounded .

8, also se(t) convergea unlformly to s*(t).

by C,. Since "0 - ’O'T €c

1




Let D,4 be the domain defined by

8
and let u* be the unique solution of
u* = 0 in Dge
uy(0,t) = glu*(0,t),t),
u*{x,0) = h(x),
u*(s(t),t) = 0,

We will show that ue(x,t) + u*(x,t)

uniformly in S and that the pair

o, = {0<x<cs*rr)} x (0,7 ,

te (o7 ,
x e (0,b) ,
te (0,T] .

(u*,s8*)

obtained is actually the unique solution of (SP) in the introduction.

We remark that as a consequence, in view of the unigueness for (SP), the

selection of subsequences is superfluous.

The following lemma will be needed.

Lemma 3.3: Let (x,t) + v(x,t)

Lv = 0 in Dge »

v, (0,t) = g(ue(o,t).t),
v{x,0) = h{x),

vis*(t),t) 0,

0 < vix,t) € Cq(s*(t) - x),

be the unique solution of

te (0,7 ,
xe (0,b) ,

te (0,T) .

(x,t) e D, .

8O

The lemma is proved by standard barrier techniques and the maximum principle




4., Convergence of the scheme:

Lemma 4.1: ue(x,t) + u*(x,t) uniformly in 8, as © * 0,
Proof: By the triangle inequality

hu, =utl. S b b+ byl
Ug = s Yiw,g t

’ 2 ®,5

where w,(x,t) - ua(x,t) - vix,t) and vz(x,t) = v(x,t) - u*(x,t), and v |is
defined in Lewma 3.3.

Set
a(e) = min{sy(e),a%(e)}s Blt) = max{sy(t),a%(v)} ,
S(t) = B(e) - a(t), te (0,1 .
We already know that &(t) + 0 uniformly in (0,T), as 6 + 0,
Consider the rectangle Rj, 1 ¢ 3j<n, We claim that if
lwytx, (3 ~ 1O} < c1l6l(j_1)e, x € (0,%), then
lwgx,£)} < c M81 ,  (x,£) € (0, x ((3 - 10,38) .
If for te [(§ - 118,38), x € s*(t) then w,; solves the problem

b]
wy =0 in {0 ¢ x< xj} x ((§ - 16,38} ,

wy (0,8) = 0, te (- 10,30,
x
|w1(x,(j - 1)6)1 < C1l6|(j_1)eu x € (o'xj] ’
wylxg,t) = —vixy,t), te ((J - 18,30] .
Hence |w,(x,t)] € max{c1I6l(j_1)e, max v(xj,t)}, (x,t) € Ry. By Lemma 3.3 we

[(3-1)90,361
nbhtain

lwate,8) ] € C1'6lt’ (x,t) e [0,%) x [(3 - 1)0,30) .
If for t e [(§ - 1)0,38], xj > a*(t), then w, solves the problem
Lwy =0 in {0 ¢ x < s*(t)} % ({3 - 118,30) ,
w1x(0,t) =0, te ((3 - 1)68,50),

fwylx, (3 - 18} < c 188 0 ¢ x<s*[{) - N8,

(j=10’
wils®(t),t) = ug(a*(t),t), te ((3 - 1)8,j0] .

By Lemma 3.2 we have 0 € ue(x,t) < C1(xj - x), (x,t) e Rj and therefore

lwy(x,t)] € c’IGIC, (x,t) @ (0,%) x ((j ~ 1)0,30) .
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.

If t* e ((5 - 1)0,38) such that xy = s*(t*), then we repeat analogous argusents

in the domains so determined.
Now since for t = 0, wl(x,O) =0, xe (0,%), an inductive argument gives
lwytx,0)) € c H8) , xe (0%, te (0,1 .
As for Voo since it solves the problem
Iwyg = 0 in Dg. ,
Wy (0,t) = glug(o,t),t) ~ glu*(0,t),t) ,
wz(x,O) = 0, x € (0,b)
wy(s*(t),t) = 0, te (0,T]

it can be dominated [2,3] by the function
- t
wz(x,t) =f N(x,e:O.T)lq(ue(o,T),T) - g{u*(0,T),T)]ar
0

the unique solution of

Ilalz-o in 8,

¥, (0,t) = =lglug(0,8),8) = glur(0,),8)|, te (0,7 ,

;é(x,o) =0, x e (0,%) .

Hence

t
lwy(x, &)1 € G, [ N(x,t10,7)|ug(0,T) - u*(0,T)fdr .
0

We deduce that

t I“e(olr) - u.(ort)l

1
Jug(x,t) = u*(x,t)| € Jw (x,t)] +G, — [ dr
0 ’ ’ 1' 1/;0 t-T
sup  Jug(x,T) = u(x,T)|
G t 0
< c 180 +-lf xe(9,%) ar
't A et =t

-13=~
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And by Gronwall's inequality

2G‘
~ /T
. '
(4.1) sup Iue(x,t) - ulx,t)| ¢ c1l6lte = cz'":
' x8(0,*)

for all te (0,7)], The lemma is proved.

Lemma 4.2: The pair (u*,s*) coincides with the unique solution of (SP).

Proof: The only thing that remains to be proved is the Stefan condition

u{s(t),t) = -;(t). t e (0,T). Such a condition has been shown to bhe equivalent to the

-

{ integral identity (2, page 85)
N

:

. t b s(t)

. 4.2) stt) = b - [ glu(o,0,00at + [ n(x)ax - [ ulx,t)ax ,
" 0 0 0

-t and hence it will be sufficient to prove that s*, u*, sgatisfy (4.2).

Integrating the equation Luj = 0 over aj we obtain

10 10
- ui(xj.f)df --f gtul 0,1y, yar +
x -, (3-1)0 (3=-1)8

‘ (4.3) %

x, 3
o7 W - voax - [ wdix,g00ax .
0 0

v .

Also for (x,t) @ R, 1 < p ¢n, integrate LoP = 0 over the rectangle

3 |
[7i {0 ¢ x< xp} x ((p -~ 1)0,t). It gives .
X
3 t t *o
N 4.4y = uhtx ,71dv = - [ g(uP(o,m),mar + [ uPix,(p - 1)0)ax
, (p=1)0 P (p-1)0 0 :
xp ‘
-] WPix,trax .
3 0
Lj By the definition of (Pj) we have £
. :
x x H
j+1 3 {
[T o sax = [T wdix,s0ax .
0 0 ~ i
v

~{4=
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therefore adding the identities (4.3) for j = 1,2,...,;,b = 1 and (4.4) we obtain

pat 18 t
-1 ui(* ,at - [ ui(x ,T)aT =

(4.5) ju1 (§=1)8 (p~1)6
x

t b P
= -/ gtugto,n,nar + [ nax - [ oPrx,trax .
3 0 0

We rewrite the left hand side of (4.5) as follows:

p=1 30 t p=1 36
-1 wlix,,yar - f Px_ ar=- ] f wlix, 0)ar -
ju1 (4=1)8 % 3 (p-1)8 * P Ju1 (3-8 % 3

p=1 ja t
I J eg(t)dr -J ef(mar ,

t
-f wPix_,porar -
P 4=1 (3=1)8 (p-1)0

(p-1)8

where
edity = ulix, 00 -ulix,18), W-NBce<i8, &=1,2,.0n .
e x 1' x 1' ’ . %= s
We observe that the numbers -ui(x j,je) are the slopes of the Lipschitz

continuous polygonal ¢t + ;e(t) for (j - 1)9 ¢ t € §8, consequently

p=1 38 3 t t. - -
-1 J ul(x, ,49)at - [ uPix ,poyar = [ S g (1)dt = ao(t) -~ b .
x 3 x art °8 ]

3=1 (§-1)8 (p-1)0 P 0

Carrying this in (4.5) gives
- t b *p
(4.6) 8g(t) = b - [ glug(0,7),Thar + [ nix)dx = [ ugix,tiax +
0 0 0

p=1 30 3 t
+ I f ej(nar + [ ef(mar .
3=1 (=10 (p-1)8

By virtue of Lemma 4.1 and the uniform convergence ;o(t) + at(t), letting

8+ 0 in (4.6) gives




4 b s*(t)
s*(t) =b - f g(u*(0,0),7)at + [ n(x)ax = [ u*(x,t)dx +
0 ) 0

(4.7)

+ lm {p? Ijo ed(riar + ft Bt} .
840 4=t (3-1)0 (p-1)8
Therefore the lemma will be proved if we show that the limit in (4.7) is zero.
In order to estimate the cg( *} we will need a representation for u?‘(xj,c),
te ((3 - 10,30),
Consider identity (3.3). By taking the derivative with respect to x and

integrating by parts the first two integrals {the identity N, = -GE is used) we

obtain
xk k k
a8 f Gx,t1€,k8)u_(£,k0) 4k ~ | e(x,t1E,(x ~ N8 (E,(k ~ 10
0 0
;e e x
-~ N_(x,£70,T)g(u,(0,1),T)aT + N_(x,ti1x ,T)u (x ,T)dT ,
(x-1)8 ¥ 8 (k=10 * i e
Now by the construction of uk, the second integral in (4.8) can be rewritten as
k-1 -1
- Glx,t1€,(k = 1)0)u "' (E,(k = 110)¢E ,
[}

therefore adding the identities in (4.8) for k = 1,2,...,(3 - 1), changing the sign

and evaluating the sum at x = Xye gives

x
b 3-1 -
(4.9) TR CE S G TE NP nede, 9 - nerar
0 0
(j-1)9
= 0 Nx(let’olt)g(“e(olt)'T)dt -

) 351 Iko

k
N (x,,t1x ,0u_(x ,7)dT .
k=1 (k=1)0 b I | X x' %
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Consider now the representation (3.2). By the way uj has been constructed, the

firat inteyral on the right hand side of (3.2) reads

X

j=-1 3-1
J Glxy t1E,(3 = NOWITNE, G - oY .
0

Finally adding (3.2) and (4.,9) gives

b t
(4.10) % ui(xj.t) -f c(xj.t:E,O)h'(E)dE -f Nx(xj,th,T)g(ue(o,T),T)dt +
(] 0
ji1 !ke X
+ N _(x ,tix ,T)a _(x ,T)dT +
ket (key@ X037 %
¢ 3
+ {1-1)9 Nl b1k Ty ey TAT, £ @ ((3 - 1)0,30] .

The error terms eg(t) I =2,3,¢e0,{p = 1), can now be written as

b
1
3 ety = 3 (ui(xj,t) - u:(xj,jﬁil - { (S 0xy £1€,0) = G(x, /381,00 1h* (£)€ -
t
- { (N, (x,4£10,T) = N (x,,3810,T)1g(ug(0,7),T)ar +

46
+ f Nx(xj,jeyo,f)g(ue(o,T),t)dt
t

4=1 6 X
tix ,T) = N +30 ar
+ k§1 {k-1)9 [Nx(xj, 1%, ,T) x(xj b) ;xk,t)]ux(xk,r) +

t
+f [Nx(xj,tyx +301x

(3110 T Ryl

t)]ui(xj,T)dt -

3 3 3’

30

- wo(x ujeilef)ui(x

,T)dT =
t x 3

b)

=y 4T, + Ji Iy It Ja .
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By the mean value theorem and standard estimates on the exponential function we have

I60x ,£18,0) = G(x,,3816,0)] € (K, + )9<xe+xu-1)”%“”.

3/2

Here and in what follows Ka denote constants independent of 3. Consequently
13,1 < Bb(x,8 + K (3 - 1~ V2e72
As for Iy analogous arguments yield the estimate
l“x(letloox) - Nx(xjvjeiolt)l < x3a v
where we have used the fact that xy b > 0., Therefore J, can be estimated by
|J2| < GK3T0 .

Let us now turn to Jy. First we note that for k = 1,2,...,(j ~ 2},

N tix ,T) = 8 € (40 - ¢t )] €
| x(xj' 1 ) Nx(xj.j )xk,r)l (6] ) t::gja INxt(xj.D,x T

2

(x, = )

. -x - i B

<xe+x59 sup _3_5ﬁ‘ 4(p - T)
t<p<38 (p - 1)

Now since (xk,ke), (xj,(j - 1)8) belong to the maximal extension of the graph

(t,se(t)), we have (xj - )ﬁ() < 2C‘(0 -1T), for k= 1,2,...,(3 - 2),

and hence
52 Iko X
19,1 ¢ IN (x,,tsx, ,T) = N (x,,30x , 0 ]u_(x ,7)]dT +
k=1 (k=1)8 3K x3 k x "k
(j=1)0 4
+ {j-Z)O N (xgotax, 0T Nx(xj,jﬂng_‘,t)||ux (xy_qoT)ar
(3=2)0 (3=-2)6 -
< c,K,0 ] av + 20%x 0 f (3 - 10 - 117240
f(3-1)0 ; |
+cC IN_(x ,tx, __,T) - W (x ,38)x __,Ojat .
1 (§=2)8 x 3 3=1 x ) 3-1

In order to estimate the last integral recall that

-18-




S B Y h g

-1/2
IN (xyPixs_ (0 D)] € Rglp = ) 2, err.

Substituting this in the estimate of J3 we obtain after some algebra
135) < x5 .
Analogous considerations yield lail + 13,4) + IJZI < Ravfa. Therefore the error terms
e%(t) can be estimated by
3 _ qy3/24-1/2
legle) ) < xgﬁ R SNCIER) 0 .
For the error ne in (4.6) we have

pt 30 t
lggl ¢ L [ led(r)1ar + | le§(t)lar <
§=1 (3=1)0 (p-1)86

8 36
< [ |g;(1’)|d‘l’ + % f leg(r)ldt .
0 j=2 (j-1)6

Now trivially Ie;(t)l < ZC‘. Therefore

|ge|<2c0+xv’5§6+l</5§(j-1)-3/2.
1 9 10
j=2 j=2
§ -3/2
Since 8 < p8 < T, and the series X (3 - 1) converges, we obtain
y=2 322
<
(4.11) IEgl x"ﬁ .

This proves the lemma.

-19-
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5. The error estimate:

The purpose of this section is to give an eatimate of the speed of convergence of
the approximate interface le(t) to the true interface s(t). In view of Lemma 4.1
and (4.1) this will also complete the proof of the theorem.
Lemma 5.1: There exists a constant C depending upon H, b, Gy, Gz, T such that
|a° - "'r <of .,

Proof: Subtract (4.6) from (4.2) and use (4.11) to obtain

t .
lstt) = 3g(e)| € [ 1g(u(0,7),T) = glug(0,T),T)|dr + 4
0

l(t) Sa(t) -
+|f ulx,t)ax = [ uglx,t)dx| +
0 0

;a(t) x
- P

+ | f ue(x,t)dx -f ue(x,t)dxl + K"N v
0 0

where ‘—’B is the unigue solution of the problem

L3, = 0 in D;a 2 {0 < x<sg()} x (0,1 , ' ﬂ
Gex(O.t) = glug(0,t),t), o<cesT,
ug(x,0) = h(x), xe (0,b) ,
\-:e(;e(t),t) =0, o<t < ,

On the basis of the maximum principle and standard barriers estimates [10,7), as in

Lemma 3,3, we have
0 € u(x,t) € c1(s(t) - x), (x,t) @ DT '

0 € uglx,t) € C (aglt) ~x),  (x,t) €D; .
8

Proposition S.1: There exist constants B, and B, depending upon H, b, Gy, Gy,

T, such that

a20-
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t
{
4
a(t) sglt) ) N o:zgr Is(p) ~ sq(p)
~, |! u(x.t)dx - f “e(xlt)dx' < 51 ! ar +
0 0 1] ¢ - 1
t IGI,t
+ B, / ar .
0 Yt -7
! Proof of Proposition 5.1: Set
: a(t) = min{s(e), 85061}y Bre) = max{s(e),sg(er},
3 Sie) = Bee) - a(ey, t e {0,7] .
o~ Obviously ;('), B(*) are non-decreasing Lipschitz continuous functions with
Lipschitz oconstant bounded by C,. Then
- 8,(t) -
s(t) 6 - a(t) _
: \f u(x,t)dx - [ ugix,trax| < J Julx,t) = uglx,t)|dx +
* ] 0 ]
B
. +/ ly(x,e)jax = 1, + I,
ace)
N where
e
' ulx,t)  1f ae) = sy(t)
L]
ylx,8) =¢ _ -
uglx,t) 1if a(r) = s(t) .

+a

We dominate the integrand in I, by the sum |v - \.xel + |lu - v] where v is dQefined

o B

in Lemma 3.3 and v,, v, are the solutions of the problems

focxcam)l x{oce<T},

Lvy = 0,
(F;1) Vig(0:8) = 0, o¢ct<T,
v,(x.o)-o, 0<x<b,
v @) ,0) = c 8, 0<esT
and
Lv, = 0, {0,=) x (o0,7) ,
(Pv2) Voxl0st) = <lg(ulo,t),t) - glugto,t),00l, O0<ces<T,
vz(x,ﬂ) =0, x e [0,*) . .

-2t~
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As for v,, it can be represented explicitly (9], by

t
valx,8) = [ N(x,£10,7)1g(u(0,T),T) = gluy(0,7),T)dr .
0

Therefore by virtue of the Lipschitz continuity of g(°,t) and (4.1) we obtain

l6lt

1]

t
1
voix,t) € —c,. [
2 "2

art .

]

By an argqument of [:. page 87, vy can be dominated by z(x,t) + z(-x,t) where =z

solves
Lz = 0, {-a(t) < xc¢=} x{ocesT),
(P,) z-ae) ey =8ty , ocecr,
z(x,0) = 0, “b€ x>,

Then there exists a constant K4, depending only upon the data such that

t
z(x,t) € K., g |3|t|rx(x.t;-u(f),1)|df .
Therefore
ale) !E(c) !‘ It 13
v,{x,t)ax € z(x,t)dx € z(x,t)dx € K ar .
0 ! - ’ - By xTT
-a(t) -a(t)

The estimate of I, is done by exploiting again the methods of [2] page 87 and
dominating the integrand by ;(x,t), the solution of

Lz = 0, {a(e) < x <=} x {0 < <7},

®~) Z(x,0) = 0, b xew,

z(a(t),t) = ¢, 3w, D<Ce&T .

PRV
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o,

o

t 10
Izcxuf—l—ar.
0 't -1

Proposition 5.2: There exist a constant S depending upon H, b, G1, Gz, T such
that

;e(t) x

- 4 -~
W uglx,t)dx - ! ug(x,t)ax] < BO .
0 0

Proof of Proposition 5.2: For t > 0 fixed we have Ee(t) > xb. Then

;e‘t’ x x
- p P _
\f ue(x,t)dx - f ue(x,t)dxl < f |ue(x,t) - ue(x,t)ldx +
0 0 (1]
se(t) )
+ ’f( g (x,t)dx = I, + T, .
P

Standard barrier arguments (7,8,9) give
sup  luglx,t)| € Cytb +CyT)
(x,"-)@-
Sg

On the other hand by the oonstruction of ;B('), the distance ;e(t) - xp is at most
C19. Hence

< 9 .

J2 K1S

To estimate the integrand in Jy we proceed as in Lemma 4.1. 1In fact, in the present
situation the estimates are simpler since ;6 - ug has zero flux at the fixed face
x = 0, We obtain the estimate analogous to (4.1)

|Ge(x,t) - ue(x,t)l <x sup Ise(f) - se(f)l .

16 herce

As remarked above for all t € {0,T] we have

sg(t) =~ sg(t) €6,

and hence the proposition is proved,




s -

4
wWe now oonclude the proof of Lemma 5.1. Notice that by virtue of the Lipschitz
b ~, continuity of g(*,t) and (4.1) we have
t t juf0,7) - u,(0,1)}
[ 19tu(0,1),1) ~ glu,(0,1),7)]at € G -r"zj 8 at
L[4 ’ ’ ’
0 8 L T o1
. <G1T/2C2f — g .
i 0 Yt -7
; Putting together the various estimates so obtained we gee that for all 0 < t < T we
\ have
4
. - v 1B t 181
- Iste) - 85(e) ] € K, B+ K, [ ~——ar+ K, [ ar .
- 0 7t ~1 0 vt ~ 1
Now
Is(t) ~ sg(t)] > la(t) - sg(t)] = lag(t) - sg(t)]
and
a , 11 = sup Is(p) - ;e“’” < IGI' + sup |sglp) - Ee(oH < NSIT + c16 .
0€psT 0<p<T !
.‘ 34
* Consequently the above implies ’ '
- /5 ft l6lT /
18t <x_vV8 +x —dr ;
""Q t 20 21 0 /E—_—-; |
e i
B« ‘
¥ The proof of the lemma is concluded with an application of Gronwall's inequality. ;
. !
‘4 - i
‘ﬂ
R
| .
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6, Modifications of the scheme:
~, Consider the sequence of approximating problem (FB) introduced in Section 2. The
theorem remains true if we modify the flux condition on the fixed face x = 0 in (Pj)
as follows
(6.i) Retarded flux.
. We set u;(o,t) = g(h(0),t), 0 < t <6 and for j > 1 we replace the flux
condition in (Pj) with
p wlo,e) = gd“to,e - 0),8), (3-nB<cE< 38,
- (6.ii) Piecewise constant flux. '
E The modification consists in freezing the flux on x = 0 in the jth rectangle
;i at its value at the lower left corner.
- set ul(0,t) = g(h(0),0), 0 < t € 8 and then for 3 > 1
- ud(0,6) = g3 0,3 - VO3 -6, (3 -nBcr< 0,
R The proof of the convergence and the error estimate for the scheme obtained with the
above modifications, is carried out in essentially the same way as indicated in the
;- previous sections. Some minor modifications are needed which we leave to the reader,
g . (cf. [1]).
g
3
2 -
o
' ]
e
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